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Abstract

The dynamics of HIV-1 infection consist of three distinct phases starting with primary infection, then
latency and finally AIDS or drug therapy. In this paper we model the dynamics of primary infection
and the beginning of latency. We show that allowing for time delays in the model better predicts viral load
data when compared to models with no time delays. We also find that our model of primary infection pre-
dicts the turnover rates for productively infected T cells and viral totals to be much longer than compared
to data from patients receiving anti-viral drug therapy. Hence the dynamics of the infection can change dra-
matically from one stage to the next. However, we also show that with the data available the results are
highly sensitive to the chosen model. We compare the results using analysis and Monte Carlo techniques
for three different models and show how each predicts rather dramatic differences between the fitted param-
eters. We show, using a v2 test, that these differences between models are statistically significant and using a
jackknifing method, we find the confidence intervals for the parameters. These differences in parameter esti-
mations lead to widely varying conclusions about HIV pathogenesis. For instance, we find in our model
with time delays the existence of a Hopf bifurcation that leads to sustained oscillations and that these
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oscillations could simulate the rapid turnover between viral strains and the appropriate CTL response
necessary to control the virus, similar to that of a predator–prey type system.
� 2006 Elsevier Inc. All rights reserved.

Keywords: HIV; Primary infection; Time delays; Monte Carlo; Jackknifing; Model sensitivity
1. Introduction

The dynamics of HIV-1 consist of three distinct phases starting with primary infection, then
latency and finally AIDS or drug therapy. Primary infection begins when the host first becomes
infected with HIV-1. During this period there is a rapid increase in the number of viral particles
in the plasma which can reach well over 10 million copies per ml. While in primary infection the
infectious HIV-1 particles seek out target cells, mostly CD4+ T cells, and infect them until a peak
in viral concentration is reached. After which, due to limitations of target cells and/or the
emergence of cytotoxic (or effector) T cells that target HIV-1 infected cells, the viral load begins
to decline. These two factors play a major role in the control of viral loads during primary
infection.

Primary infection ends when the viral loads reach a set point which defines the beginning of
latency. Viral load at set point is a good indicator of the future of the disease. During latency,
there can be numerous changes in the viral load totals but not to the extent seen in primary infec-
tion. In many patients the behavior is characteristic of a damped oscillating system in which there
are substantial oscillations in viral loads until a quasi-steady state level is reached. This state can
last for many years until the virus becomes more active, i.e., the patient develops AIDS, or the
patient receives an anti-viral therapy which causes viral totals to greatly diminish.

We examine the dynamics of primary infection and latency in this paper by considering a
delay differential equation model, where the time delay represents the lag in effector cell activa-
tion after initial infection. Adding the dynamics of the effector cells to previously existing mod-
els increases the number of model parameters and so we employ a Monte Carlo numerical
technique and jackknifing to estimate the parameters. We assume certain parameters to have
the same value as given in Stafford et al. [1] while allowing for others, such as the growth
and death rates of effector cells, the length of the time delay, and the death rates of produc-
tively infected T cells and virus to be estimated. Our analyses give widely varying estimates
of these kinetic rates when compared to the estimates in Stafford et al. [1], such as the death
rates of productively infected T cells and virus, while providing very similar dynamical fits to
the patient data. These results show how sensitive the fits to patient data are to the chosen
model, especially when the data is insufficient, i.e., not enough data points for the studied
period to distinguish between the models. Even though the parameter estimates are sensitive
to the model, each model allows for a different interpretation of the biology, and we show
through the analysis of each model its usefulness in future research of HIV primary infection.
For instance, we find for certain parameter ranges that the dynamics lead to sustained oscilla-
tions in viral loads which implies the viral dynamics are actively changing during latency. These
dynamics are not seen in the models without the time delays unless certain non-linearities are
introduced [2].
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2. Basic model

The models in this paper seek to describe the dynamics of HIV-1 viral load during primary
infection. Stafford et al. [1] proposed an ODE model that illustrates two possible immune re-
sponses that may control the steady state level of virus after primary infection. Their model con-
sisted of three types of cells: target cells (CD4+ T cells), T, productively infected CD4+ T cells, T *,
and free virus, V. They assume target cells decay exponentially with no proliferation. Their model
accounts for primary infection and latency differently then previous models [3–7] by including an
exponential term to account for the cytotoxic activity of effector cells targeting infected cells. They
showed that without this term their model was unable to account for the long term steady state
viral loads seen in some of the patients. We pursued the idea of CD8+ T cell reduction of produc-
tively infected T cells by developing an equation for CTL’s, E.

2.1. Effector cell equation

Determining the proper equation for effector cells is not straightforward due to the complexities
of the biology. Previous work by DeBoer and Perelson [2] and Nowak and Bangham [8] consid-
ered effector cell dynamics with
dE
dt

¼ aEEI � dEE; ð1Þ
where aE is the rate with which an effector cell, E, comes in contact with a productively infected T
cell, I, and dE is the death rate of effector cells. Note that their notation assumes I instead of T * for
these cells. However, a problem with this choice for effector cells is that it leads to a steady state
condition I ss ¼ dE

aE
and thus the steady state dynamics of the productively infected T cells are inde-

pendent of any viral parameters. Therefore, one needs to assume a steady state level of produc-
tively infected T cells and set the parameters for effector cells based on this value. This then
puts a constraint on the full model’s dynamics and thus limits its predictive ability.

One could also use a more sophisticated equation for effector cells [2] but this would only intro-
duce more variability into the model and thus take away from the focus of simply including the
dynamics for effector cells. We found that if we considered (1) in our model that the Monte Carlo
simulations did not always settle to a global minima, especially when we fixed c = 3 day�1. Also,
when we fixed the steady state levels as done in [2,8] we find using (1) that the models’ predicted
maximal levels of effector cells during primary infection were on average less then 0.124 ll�1 and
thus well below the values from the literature. Data from the literature shows the average number
of effector cells to range between 375 and 1100 ll�1 [9,10].

We chose to assume that the effector cells were activated at a rate proportional to the level of
productively infected T cells. In our model, these cells become activated at a rate p and decay with
a half life of 1/dE. We will also consider a time delay in the activation term to account for the time
needed by effector cells to recognize an infection. For our case we chose,
dE
dt

¼ pT � � dEE. ð2Þ
We consider the CTL burst size to be dependent on the duration of antigen presentation. Exper-
imental studies have shown that following a brief antigen encounter CD8+ T cells divide into
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effector cells and the differentiation continues even after the antigenic stimulus has been removed.
The capacity of CTLs to undergo prolonged division in the absence of antigen has been monitored
in Listeria monocytogenes bacterial infection in vitro by Mercado et al. [11] and Wong and Pamer
[12]. van Stipdonk et al. [13] emphasized this idea by engineering antigen presenting cells which
regulate CD8+ T cells priming. The results in [13] were used by Antia et al. [14] to argue that
the simple predator-prey type dynamics for CTL cell responses was not appropriate and therefore
the level of effector cells is not simply proportional to the concentration of productively infected T
cells. However, van Stipdonk et al. [15] followed up their paper in 2001 and showed that CD8+ T
cells that received brief antigenic stimulation undergo apoptosis much faster than those that
receive sustained signals from antigen presenting cells. Hence, disproving their earlier claims
and again leaving the question, of what is the best equation for effector cells, unanswered.

Another issue to consider is the importance of costimulatory cytokines in the CTL proliferation
pathway. Wong and Pamer et al. [12] used IL-2 to stimulate CTL differentiation after antigen re-
moval, and although CTLs are capable of producing their own IL-2 [16], van Stipdonk has shown
that a prolonged antigenic presence increases the capacity of CTLs to produce and respond to
IL-2 simulations [15]. Finally, there are no studies that explain how the duration of antigenic
stimulation regulates CTL responses in viral infections like HIV. One difference between the
immune response in HIV infection and Listeria infection regards the number of CD8+ T cells
involved in the response. Listeria induces huge proliferation rates, while only 1.6–18.4% of the
total number of CD8+ T cells respond to HIV infections [17]. Also, the physiological relevance
of this programmed immune response is limited by the fact that conclusions were determined
by in vitro experiments. Hence, we are far from understanding the dynamics of CTL division
cycles and further studies are needed to assess whether or not the immune response depends on
the duration of antigenic exposure.

2.2. Effector model

We will consider both a non-delay model (effector model) and one with a time delay, t � s, in
the activation of the effector cells (Delay model 1). In either case the steady state level of produc-
tively infected T cells is now controlled by viral parameters. We find in our case that when we con-
sider (2) in the model that the effector cells can range from 1 to 980 ll�1 which is in the same range
as found in [8] and also overlaps with the values given in [9,10]. With this in mind we have the
following set of equations as our basic model,
dT
dt

¼ s� dT � kVT ;

dT �

dt
¼ kVT � dT � � dxET �;

dV
dt

¼ NdT � � cV ;

dE
dt

¼ pT � � dEE.

ð3Þ
The initial conditions are T(0) = T0, T*(0) = 0, V(0) = V0, E(0) = 0. Here T, T*, V and E 2 Rþ

and all parameters are in Rþ. The constant s represents a source of healthy cells and d is their
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death rate. k is the infectivity rate, d is the death rate of the infected cells and dx represents the
effectiveness of the immune response. N is the number of virus particles produced per infected cell
and c is the viral clearance rate.

The inclusion of the term dxET*, allows for the removal of productively infected T cells due to a
cell mediated immune response. Stafford et al. [1] provided for this response by using a compli-
cated and seemingly arbitrary exponential function for effector cell killing where instead of the
�dT* � dxET* term they have d = d0 + d1(V) where d1(V) = 0 for t < t1 and d1(V) = f(t)V for
t > t1 and t1 is the assumed start time of the CD8+ response. They then defined
f ðtÞ ¼ b
1þ je�ðt�t1Þ=DT 1

� b
1þ je�ðt�t1Þ=DT 2

ð4Þ
and comment that other forms for f can provide similar responses (Stafford model 2). What we
have done differently is allow for a general solution of E.

2.3. Analysis of effector model

In the absence of the virus, i.e., non-infected steady state, the T cell population has a steady
state value of
bT ¼ s

d
ð5Þ
with all other variables having a steady state value of zero. Eq. (3) has two steady state solutions,
the non-infected steady state (bT ; 0; 0; 0) and the infected steady state (T ; T �; V ;E) where
T � ¼ kNddE

cdxp
T � ddE

dxp
! T >

c
Nk

;

V ¼ Nd
c

kNddE

cdxp
T � ddE

dxp

� �
¼ Nd

c
T �;

E ¼ p
dE

kNddE

cdxp
T � ddE

dxp

� �
¼ p

dE
T �;

ð6Þ
where T is
T ¼
kNd2dE
cdxp

� d þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kNd2dE
cdxp

� d
� �2

þ 4s k2N2d2dE
c2dxp

r
2 k2N2d2dE

c2dxp

ð7Þ
and is easily shown to be positive for all parameters.
In order to study the stability of the steady states we linearize (3) about a given steady state,

(denoted by a subscript ‘ss’), to get
A ¼

�d � kV ss 0 �kT ss 0

kV ss �d� dxEss kT ss �dxT �
ss

0 Nd �c 0

0 p 0 �dE

0BBB@
1CCCA.
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The characteristic equation for the linearized system is
k4 þ a1k
3 þ a2k

2 þ a3kþ a4 ¼ 0; ð8Þ
where
a1 ¼ cþ dþ dxEss þ dE þ d þ kV ss;

a2 ¼ ðdEk þ kcþ kdþ kdxEssÞV ss þ ddE þ ddE þ ddþ dcþ cdE þ dxEsscþ T �
sspdx

þ ddxEss þ dc� dkT ssN þ dxEssdE;

a3 ¼ ððkdxcþ kdxdEÞV ss þ ddxcþ cdEdx þ ddxdEÞEss þ ð�dkNdE � ddkNÞT ss

þ ðddEk þ dEkcþ pkdxT
�
ss þ dkcÞV ss þ dcdE þ ðpddx þ pdxcÞT �

ss

þ ddEd þ ddcþ cdEd;

a4 ¼ ðkcdEdxEss þ ddEkcþ T �
ssdxcpkÞV ss

þ dcdEdxEss þ cdEdd � ddkT ssNdE þ T �
sspdxcd.
By the Routh–Hurwitz conditions, all eigenvalues of (8) have negative real part if and only if
a1 > 0; a4 > 0; B1 � a1a2 � a3 > 0 and B1a3 � a1a4 > 0. ð9Þ
Proposition 1. The non-infected steady state is stable if and only if
c
Nk

>
s
d
. ð10Þ
Proof. The Jacobian matrix at the non-infected steady state is
A ¼

�d 0 � ks
d 0

0 �d ks
d 0

0 Nd �c 0

0 p 0 �dE

0BBB@
1CCCA;
which produces the eigenvalues
k1 ¼ �d; k2 ¼ �dE;

k3;4 ¼
�ðcþ dÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc� dÞ2 þ 4ksNd

d

q
2

.

ð11Þ
Hence it is easily seen that all eigenvalues are real and negative given (10) is satisfied. Under this
assumption the non-infected steady-state is locally stable. h

Proposition 2. The infected steady state (6) is stable if and only if the Routh–Hurwitz inequalities
(9) evaluated at this steady state are satisfied.
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Proof. From (6) we have that the infected steady-state exists if and only if
Nk
c
T > 1;
which will make T �; V ;E positive.
Let y ¼ Nk

c T � 1. We will show that a1, a4, a1a2 � a3 are positive when y is positive. By
substituting equalities (6) into the expressions of a1, a2, a3 and a4 we obtain
a1 ¼ y dþ kNd2dE

cdxp

� �
þ cþ dþ d þ dE;

a2 ¼ y
k2N 2d3dE

c2pdx

T þ kNd2dE

pdx

þ kNd2d2
E

cpdx

þ ddE

� �
þ kNdd

c
T þ kNddE

c
T þ ddE þ cdE þ cd;

a3 ¼ y2
kNd3d2

E

cpdx

þ y
k2N 2d3dE

cpdx

T þ k2N 2d3d2
E

c2pdx

T þ kNd2d2
E

pdx

þ ddEcþ dddE

� �
þ cdEd þ kNdddE

c
T ;

a4 ¼ y2
kNd3d2

E

pdx

þ y
k2N 2d3d2

E

cpdx

T þ cdddE

� �
.

We now have a1, a2, a3 and a4 as polynomials in y with positive coefficients, so they are positive
for positive values of y. The next step is to compute B1 = a1a2 � a3 which is
B1 ¼ y2
kNd3d2

E

cpdx

þ kNd3dE

pdx

þ k2N 2d4d2
E

cp2d2
x

þ k2N 2d4d3
E

c2p2d2
x

þ k2N 2d4dE

c2pdx

T þ k3N 3d5d2
E

c3p2d2
x

T þd2dE

 !

þ y dcdþdddE þddEcþd2dEþ dd2
Eþ

k2N 2d3d2
E

c2pdx

T þ k2N 2d4dE

c2pdx

T þ2k2N 2d3dEd
c2pdx

T
�

þkNd2d
c

T þ kNd2dE

c
T þ 2kNd2d2

E

pdx

þ kNd2d3
E

cpdx

þ kNd3dE

pdx

þ kNd2d3
E

cpdx

þ ckNd2dE

pdx

þ2kNd2dEd
pdx

þ2kNd2d2
Ed

cpdx

�
þT

kNdd2
E

c
þ kNd2dE

c
þ kNddEd

c
þ kNd2d

c
þ kNddþ kNdEdþ

kNdd2

c

� �
þcd2

E þ cd2þ dd2
E þ c2dþ c2dE þ cddþ d2dEþ2cdEdþdddE þddEc.
Here B1 is a second degree polynomial in y with positive coefficients. Hence B1 is always positive
on the positive axis. The proof of the last relation B1a3 � a1a2 > 0 is tedious and can be verified
using maple to be true when (10) is violated. h

We will show later that the stability of the infected steady state can bifurcate into a periodic
orbit when we include a time delay.
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3. Model with time delays

In this section we introduce a time delay in the model (3) by assuming that the immune response
at time t is generated by the infection of a cell T* at time t � s, where s is constant. The model
(Delay model 1) then becomes
dT
dt

¼ s� dT � kVT ;

dT �

dt
¼ kVT � dT � � dxET �;

dV
dt

¼ NdT � � cV ;

dE
dt

¼ pT �ðt � sÞ � dEE;

ð12Þ
where the term T*(t � s) allows for a time delay between the moment of infection and the recog-
nition of the infected cells by the cytotoxic CD8+ T cells. The initial values are
T ð0Þ ¼ T 0; T �ðhÞ ¼ 0; V ð0Þ ¼ V 0; Eð0Þ ¼ 0; h 2 ½�s; 0�.
3.1. Analysis of Delay model 1

We have again two steady-states, the non-infected steady-state (bT ; 0; 0; 0) and the infected
steady state (T ; T �; V ;E) where T ; T �; V ;E are given by (6). We want to see if the delay changes
the stability of the steady states. The linearized system in vector form is
dY
dt

¼ BY ðtÞ þ CY ðt � sÞ;
where B and C are defined by
B ¼

�d � kV ss 0 �kT ss 0

kV ss �d� dxEss kT ss �dxT �
ss

0 Nd �c 0

0 0 0 �dE

0BBB@
1CCCA; C ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 p 0 0

0BBB@
1CCCA
and
Y ðtÞ ¼

T ðtÞ
T �ðtÞ
V ðtÞ
EðtÞ

0BBB@
1CCCA.
The characteristic equation for (12) is then given by
detðkI4 � B� e�ksCÞ ¼ 0;
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that is,
HðkÞ ¼ k4 þ b1k
3 þ b2k

2 þ b3kþ b4 þ b5k
2e�ks þ b6ke�ks þ b7e�ks ¼ 0; ð13Þ
where
b1 ¼ a1;

b2 ¼ a2 � pdxT
�
ss;

b3 ¼ a3 � ðcþ kV ss þ dÞpdxT
�
ss;

b4 ¼ a4 � ðkV ss þ dÞpdxcT
�
ss;

b5 ¼ dxpT �
ss;

b6 ¼ ðkV ss þ d þ cÞdxpT �
ss;

b7 ¼ ðd þ kV ssÞcdxpT �
ss;
where a1, a2, a3, a4 are the coefficients of the characteristic polynomial for the effector model, i.e.,
s = 0.

It is known that the infected steady state is stable if all the eigenvalues given by (13) have neg-
ative real parts. We know that (13) with the condition s = 0 has all roots in the left half plane if (9)
is satisfied. By Rouché’s Theorem the transcendental equation has roots with positive real parts,
given it had negative roots for s = 0, if and only if it has purely imaginary roots. Our goal is to
find under what conditions we will have no such roots. Recent results have shown that this
calculation can be made by applying sturm sequences (see [18]). Let k = l(s) + im(s) be the root
of (13), with l and m 2 R. If we substitute into (13) we get
Hðl;mÞ ¼ ½l4 þ m4 � 6l2m2 þ b1ðl3 � 3lm2Þþ b2ðl2 � m2Þþ b3lþ b4 þ b5e�lsððl2 � m2ÞcosðmsÞ
þ 2lm sinðmsÞÞþ b6e�lsðlcosðmsÞþ m sinðmsÞÞþ b7e�ls cosðmsÞ�
þ i½4l3m� 4lm3 þ b1ð3l2m� m3Þþ 2b2lmþ b3mþ b5e�lsð2lmcosðmsÞ� ðl2 � m2Þ sinðmsÞÞ
þ b6e�lsðmcosðmsÞ� l sinðmsÞÞ� b7e�ls sinðmsÞ�.
If we can find a root of (13) of the form k = im, then the infected steady state losses its stability.
This will happen if and only if
Hð0; mÞ ¼ ½m4 � b2m2 þ b4 � b5m2 cosðmsÞ þ b6m sinðmsÞ þ b7 cosðmsÞ�
þ i½�b1m3 þ b3mþ b5m2 sinðmsÞ þ b6m cosðmsÞ � b7 sinðmsÞ� ¼ 0 ð14Þ
for some m 2 R. It is clear that we have a solution m of (14) if both the real and imaginary parts of
the equation equal zero. In other words,
m4 � b2m2 þ b4 ¼ b5m2 cosðmsÞ � b6m sinðmsÞ � b7 cosðmsÞ
� b1m3 þ b3m ¼ �b5m2 sinðmsÞ � b6m cosðmsÞ þ b7 sinðmsÞ.
If we add the square of both equations we obtain
m8 þ am6 þ bm4 þ cm2 þ x ¼ 0; ð15Þ
where a ¼ b21 � 2b2, b ¼ b22 þ 2b4 � 2b1b3 � b25, c ¼ �2b2b4 þ b23 � b26 þ 2b5b7, and x ¼ b24 � b27. If
we substitute w = m2 into (15) we obtain a fourth degree polynomial in w
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w4 þ aw3 þ bw2 þ cwþ x ¼ 0. ð16Þ
If all the roots of the polynomial (16) are negative or imaginary then (15) will have no roots since m
is real. Hence, we have no purely imaginary roots forH, and the infected steady state will be stable
in the delay case.

If we reconsider (16), a fourth degree polynomial with real coefficients, we can apply the
Routh–Hurwitz conditions to show when all the roots lie in the left half plane. Hence, we have
the following result.

Proposition 3. Under the following assumptions:
a > 0; x > 0; ab� c > 0; abc� ax� c2 > 0.
Eq. (16) has no positive real roots.
4. Logistic model for target cells

In our Delay model 1 (12) we have assumed a constant source term for target cells and an expo-
nential death rate, however, it is possible to consider other behaviors such as logistic growth [2].
Assuming target cells can grow at a rate, a day�1 and that this growth is limited by a carrying
capacity, Tmax cells, we have
dT
dt

¼ aT 1� T þ T �

Tmax

� �
� kVT ;

dT �

dt
¼ kVT � dT � � dxET �;

dV
dt

¼ NdT � � cV ;

dE
dt

¼ pT � � dEE

ð17Þ
with initial conditions T(0) = T0, T*(0) = 0, V(0) = V0, E(0) = 0. Tmax is the total number of
target cells in the plasma.

4.1. Analysis of logistic model

In the absence of the virus the T-cell population has a steady state value of bT ¼ Tmax. Now if we
consider an infection modeled by the system (17) we will have two steady state solutions, the non-
infected steady state ðbT ; 0; 0; 0Þ and the infected steady state (bT ; bT �; bV ; bE) where
bT � ¼ kNddE

cdxp
bT � ddE

dxp
;

bV ¼ Nd
c

kNddE

cdxp
bT � ddE

dxp

� �
;
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bE ¼ p
dE

kNddE

cdxp
bT � ddE

dxp

� �
;

bT ¼
aþ kNd2dE

cdxp
þ adEd
dxpTmax

a
Tmax

þ aNdkdE

cdxpTmax

þ k2N 2d2dE

c2dxp

.

We linearize our system (where the subscript ‘ss’ is referring to any given steady state) to study
stability and find the Jacobian matrix to be
A ¼

a� aT �
ss

Tmax

� 2aT ss

Tmax

� kV ss � aT ss

Tmax

�kT ss 0

kV ss �d� dxEss kT ss �dxT �
ss

0 Nd �c 0

0 p 0 �dE

0BBBBB@

1CCCCCA. ð18Þ
The corresponding characteristic equation for the linearized system is
k4 þ â1k
3 þ â2k

2 þ â3kþ â4 ¼ 0; ð19Þ

where
â1 ¼�aþ dE þdþ cþ kV ssþ dxEssþ
aT �

ss

Tmax

þ2aT ss

Tmax

;

â2 ¼
adx

Tmax

T �
ssþ kdxV ssþ

2adx

Tmax

T ssþ dxðcþ dE� aÞ
� �

Essþ
ðacþadþTmaxpdxþadEÞ

Tmax

T �
ss

þ ka
Tmax

T ssþ kcþ kdEþ kd
� �

V ssþ
2aðcþ dE þdÞ

Tmax

�Ndk
� �

T ssþð�adþddE þ cdE �adEþdc�acÞ;

â3 ¼ ðkdxcþ kdxdEÞV ssþðdxcdE �adxc�adxdEÞþ
adxcþ adxdE

Tmax

T �
ssþ

2adxcþ2adxdE

Tmax

T ss

� �
Ess

þ ðkdEaþ kacÞ
Tmax

T ssþ kpdxT
�
ssþðkdcþ kcdE þ kddEÞ

� �
V ssþð�addE þdcdE�acdE �adcÞ

þ apdx

Tmax

T �
ss
2þ ð2apdx� kaNdÞ

Tmax

T ssþ
ðacdE þadcþTmaxpdxc�aTmaxpdxþaddEÞ

Tmax

� �
T �

ss

þaTmaxNdkþ2acdE þ2addE �TmaxNdkdE þ2adc
Tmax

T ss�
2aNdk
Tmax

T 2
ss;

â4 ¼
acdxdE

Tmax

T �
ssþ kdxcdEV ss�acdxdE þ

2adxcdET ss

Tmax

� �
Ess

þ kpdxcT
�
ssþ kdcdE þ

kcdEaT ss

Tmax

� �
V ss

þaNdkdET ss�adcdE þ
2adcdE

Tmax

T ss�
2aNdkdE

Tmax

T 2
ss

þapdxc
Tmax

T �
ss
2þadcdE þ2acpdxT ss�adNkdET ss�apcdxTmax

Tmax

T �
ss.
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c
Nk

> Tmax. ð20Þ
Proof. The Jacobian matrix at the non-infected steady state (Tmax,0,0,0) is
A ¼

�a �a �kTmax 0

0 �d kTmax 0

0 Nd �c 0

0 p 0 �dE

0BBB@
1CCCA;
where the characteristic equation
ðkþ aÞðkþ dEÞðk2 þ ðdþ cÞkþ dc� NkTmaxdÞ ¼ 0
has solutions
k1 ¼ �a; k2 ¼ �dE;

k3;4 ¼
�ðcþ dÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcþ dÞ2 � 4dcþ 4NkTmaxd

q
2

.

If c
Nk > Tmax then all eigenvalues are negative so the non-infected steady state is stable. This means

that the virus will eventually go extinct. When c
Nk < Tmax the non-infected steady state is unstable

so the virus will grow without any control. We see (20) as implying that the rate of clearance of the
virus is bigger than the rate of infection. h

Proposition 5. The infected steady state is stable if and only if the following inequalities are satis-
fied, â1 > 0; â4 > 0; â1â2 � â3 > 0; â1ðâ2â3 � â4Þ � â23 > 0.

Next we consider the logistic model with a time delay (Delay model 2) as before and study
dT
dt

¼ aT 1� T þ T �

Tmax

� �
� kVT ;

dT �

dt
¼ kVT � dT � � dxET �;

dV
dt

¼ NdT � � cV ;

dE
dt

¼ pT �ðt � sÞ � dEE;

ð21Þ
where s is the time between the infection of the target cells and the initiation of the immune re-
sponse. Using the same arguments as in Section 3 we find two steady states, the non-infected state
ðbT ; 0; 0; 0Þ and the infected state ðbT ; bT �; bV ; bEÞ providing the characteristic equation
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k4 þ b1k
3 þ b2k

2 þ b3kþ b4 þ b5k
2e�ks þ b6ke�ks þ b7e�ks ¼ 0; ð22Þ
where
b1 ¼ a1;

b2 ¼ a2 � pdxT
�
ss;

b3 ¼ a3 � 2
apdxT

�
ssT ss

Tmax

� pdxT
�
ssc� kV sspdxT

�
ss þ apdxT

�
ss �

apdx

Tmax

T �
ss
2;

b4 ¼ a4 þ apdxT
�
ssc� kV sspdxT

�
ssc� 2

aT sspdxT
�
ssc

Tmax

� apdxc
Tmax

T �
ss
2;

b5 ¼ pdxT
�
ss;

b6 ¼
2aT sspdxT

�
ss

Tmax

þ aT �
ss
2pdx

Tmax

� apdxT
�
ss þ kV sspdxT

�
ss þ pdxT

�
ssc;

b7 ¼
2aT sspdxT

�
ssc

Tmax

� apdxT
�
sscþ

aT �
ss
2pdxc

Tmax

þ kV sspdxT
�
ssc.
5. Parameter estimations

We opted to implement a directed Monte Carlo to optimize 7 of the 10 unknown parameters
of the Delay model 1 (12), and the 8 unknown parameters of the Delay model 2 (21). For (12)
we consider the parameter estimates found in Stafford et al. for their model of primary infection
and chose to fix s, d, and k to be the same as given in [1]. The infectivity rate, k, has been
shown to be reliable using the steady state condition, k ¼ c

NT 0
. The parameters s and d relate

to target cell dynamics and since we are only fitting viral load data, we chose to fix these as
well. Hence, the focus of the parameter estimations is dealing with viral load kinetics. For
review, we present the general model Stafford et al. used for primary infection (Stafford model
1) [1].
dT
dt

¼ s� dT � kVT ;

dT �

dt
¼ kVT � dT �;

dV
dt

¼ NdT � � cV .

ð23Þ
They considered T0 to be 10000 cells/ml, T �
0 to be 0 cells/ml, V0 to be 10�6 virus/ml, and c to

be 3 day�1. To estimate the remaining parameters they used data from ten patients and the
method of least square estimation. We present as a reference only their median values for all
ten patients.

The parameters given in Table 1 served as a platform to estimate values for our unknown
parameters using a hill climbing Monte Carlo algorithm. To optimize model parameters using this
algorithm, one first defines a fitness function that given arbitrary parameters, returns how closely



Table 1
The median values for certain parameters for the 10 patients found in [1]

Parameter d (day�1) d (day�1) k (ml virion-day�1) (p/d)N (virus per cell) (k)s (cells ll�1 day�1)

Summary of median values from data estimations in Stafford et al.

Median 0.01 0.39 0.00000065 2241 0.14125
SD 0.0057 0.19 0.0000014 4339 0.08761

In parenthesis is the notation used in [1] and next to it is our notation. It should be noted that in Stafford et al. [1] they
set p = Nd, and gave estimates for p. Hence, the values for N given above are determined by p/d.

14 M.S. Ciupe et al. / Mathematical Biosciences 200 (2006) 1–27
the model using these parameters fits observations. Each parameter is then selected at random
from a pre-defined interval and the fitness of that parameter set is evaluated. Many parameter sets
are then tested with the hope of finding the set that allows the model to most closely match obser-
vations (see [19] for a complete sensitivity analysis of the model parameters).

This was done by first using the algorithm to search only within a range of values for each
parameter that we determined to be reasonable, and once it found an acceptable fit, only select
parameter candidates from within a particular range of the value of each parameter used in the
current ‘best model’. That is, once a parameter set had been discovered with reasonable fitness,
the algorithm would only explore locally to those parameters to select its next candidate. By vary-
ing the size of the ‘window’ from which the next parameters could be chosen, we could both
search the entire parameter space and local portions to maximize fitness by making very small
changes in the parameters. This algorithm also has the advantage of avoiding stagnation in local
maxima because it is seeded by the results of a global search, and because one can increase the
window width to find regional fits better than the local maximum.

The fitness, f, of a particular parameter set was chosen as follows:
1=f ¼
Xn
i¼1

ðlog VTiterðtiÞ � log V ðtiÞÞ2 þ ðn� 2Þðlog VTitermax � log V maxÞ2
 !1

2

; ð24Þ
where VTiter(ti) is the viral load in each patient at time ti when a sample was taken, V(ti) is the
viral load predicted by the model at the time ti, given particular parameters, and calculated using a
modified Runga–Kutta method with step size Dt = 0.01, T0 = 10 cells/ll, T �

0 ¼ 0 cells/ll,
E0 = 0 cells/ll, V0 = 10�9 virus/ll. ViralTitermax is the maximum viral titer observed in the
patient, Vmax is the viral load predicted by the model for the time the patient’s viral titer
was observed to be maximal, and n is the number of observations of viral titer made before
day 120.

We amplified the importance of the maximal viral observation in determining the fitness be-
cause in many of the patients, peak viremia was represented with very few data points, relative
to the number of points where viral load was reduced from its peak. Given this distribution of
points, the model might find solutions in which all data points but the maximal one were well pre-
dicted, thus minimizing a function that did not over-represent the importance of the maximal
observation.

We first iterated the Monte Carlo algorithm (5000 times for the Delay model 1 (12) and 15000
times for the Delay model 2 (21)) with the following parameter ranges: d 2 (0.3, 7), c 2 (2,50),
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dx 2 (0,1), p 2 (0,2), dE 2 (0,5), s 2 (0,28), and k 2 (0,2) (in the Delay model 2 only). In the Delay
model 1, k, N, and s, and d were determined by Stafford’s median or patient-specific parameter
estimates. In the Delay model 2, a = 0.1 and Tmax = 1000.

Next, the Monte Carlo chose parameters out of moving windows centered on the current ‘best
parameters’ with width equal to 0.01x that of the initial parameter selection range. In both models
10000 iterations were performed with the sliding window. In most cases, this search regimen was
sufficient to find a very close fit of the data. In more stubborn cases, we varied the number of
search iterations and window widths until an acceptable fit was found. Once we had determined
optimal parameters for each patient and in each model, we numerically investigated the sensitivity
of both models to perturbations in each parameter. This was done by collecting the median values
of each parameter for all the patients, and running the model with these parameters. The viral
loads from this run were considered observations, and the viral loads from time 12,16, . . . , 120
were used to calculate fitness as described above.

5.1. Convergence, significance and sensitivity of our estimates

It is impossible to guarantee that the sequence generated by our optimization method converges
to the global maximum. To increase the confidence in our results, we repeatedly (randomly)
seeded initial estimates for the optimization algorithm. In over 90% of the seedings, the algorithm
converged to approximately the same value, thus supporting the notion that we have identified (at
the very least) a local minimum.

A primary emphasis of this paper is to address how the introduction of additional biological
phenomena into an HIV model impacts its predictions. One way to provide evidence for or
against a more complex model is to consider the statistical issues related to how well a given mod-
el describes the data. We assume the following statistical model for the measurement error in each
viral load observation
logðVTiterðtiÞÞ ¼ logðV ðtiÞÞ þ ei; i ¼ 1; . . . ; n; ð25Þ
where the errors ei are independent and identically distributed (i.i.d.) random variables. The obser-
vations are made at the predetermined timepoints ti, where i = 1, . . . ,n. Since Eq. (12) with param-
eters [dx,p,dE,s] all set to zero is equivalent to Eq. (23), the models we consider are nested (where
one model is a simplification of another). Within a nested structure, there are well-known infer-
ence methods for dealing with simple linear models, however, our models consist of non-linear
differential equations without closed form solutions. Following the technique developed in [20],
we define our least squares cost functional:
Jn;mðxÞ ¼
Xn
i¼1

ðlogðVTitertiðmÞÞ � logðV tiðxÞÞÞ
2
; ð26Þ
where x = (c,d,k,dx,p,dE,s) is the vector of candidate parameters, n is the number of data points,
and m is the patient identification number.

A significant concern in [20] is the convergence of the numerical simulation scheme. Accord-
ingly, they define a solution to their model equation as x and an approximate solution as xN,
for index of approximation N. As N!1, they assume the chosen numerical scheme converges
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uniformly to the actual solution. Subsequently, they prove the convergence of the optima of the
approximate cost functional to the optima of the original functional (in distribution). Since our
models are relatively simple and non-stiff in the chosen parameter regions, we assume that our
modified Runga–Kutta method is sufficiently accurate to ensure that for all t of interest,
kV N

t � V tk (and by extension the difference between JN
n;m and Jn,m) is negligible.

We next define (as in [20]), the test statistic
Un ¼ n
Jn;mðx�StaffordÞ � Jn;mðx�model 1Þ

Jn;mðx�model 1Þ
ð27Þ
for x�Stafford, x�model 1 vectors of parameters which are the optimal least squares fit values for
the parameters in Eqs. (23) and (12), respectively. By Theorem 4.6 in [20], we know that this
statistic converges asymptotically to a v2(4) distribution as n !1. We can, therefore, use a null
hypothesis framework to identify statistically significant reductions in the least squares cost
functional.

For patient 1, we find the least squares (LS) for Stafford’s model to be 6.1 and the LS for our
model to be 2.37. If we then consider the null hypothesis to be Stafford’s fit given the optimal
parameters we see that (27), i.e., a v2(4) test, allows us to reject this hypothesis at a useful confi-
dence level since the statistic takes (assuming the null hypothesis that Stafford’s model is correct)
the value of
U 17 ¼ 26:75. ð28Þ
Recall that the data used in the analysis of Stafford’s model is given in Table 1 of Stafford et al.
Hence, this suggests for patient 1, that the parameters obtained by our model are of statistical

importance. Hence, the improvement in the fit in our model by adding the effector cell population
it is not simply due to the increase of the degree of freedom in the model. We find similar conclu-
sions follow in patient 3, 8 and 10. However the improvement in the fit in patients 2, 4, 5, 7, and 9
it is not statistically significant.

We then ran through a jackknifing analysis for each of the patients. In particular, for each exe-
cution of the parameter optimization, 5000 chains were initialized within a range of parameters we
felt would encompass all likely values of the parameters. Of these, the one with best fitness, was
used to initiate a Markov Chain, with a random step size chosen from a uniform distribution
across the nearest 1% of the initial parameter ranges to the current parameter set in the chain.
If the parameter set after the step had a higher fitness it was accepted with probability 1, other-
wise, the chain stayed at the original parameter set. When the algorithm had considered at least
2000 sequential candidate parameter sets without a fitness improvement, we considered it to have
converged and selected those parameters as our estimate.

For patients 3, 6, 7, 8 and 10 we left out 37% of the data points as these patients contained the
most number of data points. For patients 2, 4, 5, and 9, we randomly removed 2 of the data points
so that we could maintain at least 4 or 5 points for the fitting. In patient 1 we were not able to
remove any points. The results of our jackknifing were much less conclusive. For two of the main
parameters we are examining, i.e., the death rates of productively infected T cells, d and virus, c,
we found good consistency with the patient specific values as given in the next section, but both
had a confidence interval that included both our values and the ones in Stafford. Hence, we could
not infer any statistical significance between our results and those in Stafford [1]. For the produc-
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tion and death rates of effector cells, p, and dE respectively we found much more consistency as the
jackknifing provided very low p-values when comparing the distributions of estimates between
patients using a t-test. The parameter for the time lag for effector cells to become active, s also
had a high degree of consistency, i.e., low p-values but had relatively large standard errors which
gives a wide confidence interval. However, the best fit values for s between patients was very
consistent, ranging from 19 to 32 days.

Hence we conclude that while our algorithm for fitting the patient data suggests we have found
a new set of biologically relevant parameters, however, these estimates are not robust under all
statistical analyses. This illustrates our main point of this paper; different models can provide
widely varying estimates for parameters while predicting dynamics that fit the available data quite
closely. Furthermore, the statistical frailty of some of these estimates makes it very hard to deter-
mine a favored model. That said, however, we have shown that our results are just as acceptable
as others and can provide a drastically different interpretation of the biology; an interpretation
that does need to be taken seriously.
6. Results and conclusions

We found two major differences between Stafford’s model and our two models (12) and (21).
First, we find in patients 3, 4, 5, 7, 8, and 9 (see Figs. 1 and 2) similar dynamical behavior
between the Stafford model and our Delay model 1 (12) but with vastly different parameter esti-
mations for certain parameters (we denote estimated values for this subgroup of patients by the
subscript e1). For instance, we find the average estimated value for d for these 6 patients to be
de1 = 0.462 day�1 compared to Stafford’s de1 = 0.269 day�1. We estimated the time delay for
these patients to be se1 = 8.29 days. The most dramatic difference in parameters was seen in
the death rate of virus, c. Stafford et al. assumed c was constant for all patients and set its value
to c = 3 day�1. We allowed the Monte Carlo simulations to fit this parameter and found
ce1 = 0.366 day�1. This is a difference of over 700%. This discrepancy in c suggests a major dif-
ference in the mechanism of pathogenesis. Assuming c = 3 day�1 is consistent with drug pertur-
bation models [21–23], but if c were much smaller, it would suggest that viral particles are living
longer during primary infection, i.e., about 2.73 days, while the productively infected T cells are
living roughly half the time as predicted in Stafford et al. (see Table 2). Since both models fit the
observed data closely, it is almost impossible to determine which is ‘better’, dramatically illustrat-
ing how any conclusions drawn are contingent on the structure of the model being considered.
There are model selection methodologies on the statistical inference and Bortz and Nelson [24]
have recently developed a methodology for selecting models based on their dynamical and sta-
tistical properties.

The second difference was seen in patients 1, 2, 6, and 10. It has been postulated that viral load
levels in the plasma do not present any sustained oscillations after primary infection. This may be
true simply because the data is often too sparse and sampled periodically. We suggest these oscil-
lations are plausible since the immune response, specifically the CD8+ T cells, can act in a pred-
ator prey type dynamic with the virus. However, to confirm this would require data to be sampled
more frequently and in a somewhat random nature. Our Delay model 1 (12) predicts oscillations
in the viral loads with periods between 30 and 60 days. This period is consistent with CD8+ T cells
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Fig. 1. The fits for patients 3, 4 and 5 using (12) (Delay model 1) and the Stafford model without the immune response
(Stafford model 1) are comparable except that (12) seems to fit the earlier data points while the Stafford model seems to
fit the later data points. In either case, the overall fitness is similar, however, there is a large variation in the estimated
parameters, specifically for d (see Section 6). All the parameters for each graph can be found in Table 2, with the initial
conditions of T(0) = 10 ll�1, T*(0) = 0 ll�1, V(0) = 10�6 ml�1 and E(0) = 0.1 ll�1. Asterisks (*) are patient data.
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Fig. 2. The fits for patients 7, 8 and 9 using (12) (Delay model 1) and the Stafford model without the immune response
(Stafford model 1) are again comparable as discussed in Fig. 1. See the caption in Fig. 1 for listed parameters. Asterisks
(*) are patient data.
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Fig. 3. Analysis for patient 2, comparing the models in Stafford et al. [1] and (12). The parameters for the Stafford
model with (Stafford model 2) and without (Stafford model 1) an immune response are the same as in [1]. The Delay
model 1 parameters are given in Table 2 for this patient. The Monte Carlo simulations verified our analysis that shows
the existence of a Hopf bifurcation that allows for the model to predict sustained oscillations. We found oscillations
with a period of about 45 days. The biggest difference between these models is the estimation of the parameters. For
instance, we found in our model (12) a 79% reduction in the value for c, which suggests that during primary infection,
the viral turnover is longer then during drug therapy. (However, if we compare this to the logistic model (21) we find
over a 500% reduction in c when compared to c = 3 day�1 (see Fig. 6).) Asterisks (*) are patient data.

Table 2
Monte Carlo results for (12) where all parameters are estimated except for d, k, and s which we used their listed values in
Stafford et al. [1]

Patient d dx c p dE s N d k s Fitness n Adj.
fitness

Monte Carlo results for patient data

1 0.247 0.285 2.428 1.271 2.67 20.87 3969.04 0.013 0.00046 0.13 0.068 4 0.028
2 0.486 1.076 1.679 1.216 1.746 13.53 3703.49 0.02 0.00036 0.2 1.328 6 0.420
3 0.687 0.905 0.577 0.103 0.004 18.57 1397.94 0.0065 0.00064 0.065 1.570 9 0.393
4 0.612 1.667 0.246 3.912 8.087 0.004 160.26 0.0046 0.0048 0.046 1.398 8 0.374
5 0.541 0.623 0.537 1.768 0.403 3.3 1606.99 0.017 0.00063 0.17 0.886 7 0.256
6 0.711 0.72 0.699 2.288 1.490 19.14 1111.08 0.012 0.00075 0.12 2.154 11 0.482
7 0.345 1.595 0.372 2.947 0.471 2.51 2116.06 0.017 0.0008 0.17 0.694 11 0.155
8 0.588 0.388 0.387 1.258 3.059 24.96 1410.59 0.0085 0.00066 0.085 2.181 16 0.398
9 0.00019 1.444 0.081 1.675 0.0061 0.93 591851 0.006 0.0025 0.06 1.629 7 0.471
10 0.3 0.241 5.191 0.0051 1.798 27.98 23599.9 0.0043 0.00019 0.043 1.682 11 0.376

Median 0.514 0.812 0.557 1.473 1.618 16.05 1861.53 0.01025 0.00065 0.103 1.484 0.384
SD 0.225 0.536 1.572 1.193 2.34 10.63 185915 0.006 0.0014 0.0573 0.655 0.146

Confidence intervals are presented in Table 3.
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needing to adapt to newly evolved HIV-1 epitopes displayed on the surface of infected cells. It is
also possible, as suggested in patient 2 (see Fig. 3), that there exists sustained oscillations, via a



Table 3
The 95% confidence intervals assuming the estimates are log-normally distributed for results given in Table 2

Patient d dx c p dE s N

1 Lower 0.0226789 0.160276738 0.099839484 0.260005469 0.95010047 5.120048794 366.8748885
Upper 1.348031651 0.96801883 24.20152985 2.453448009 6.929672732 62.59489331 22773.11784

2 Lower 0.236204182 0.127537921 1.456426047 0.589421222 0.106218752 5.260763448 2785.297951
Upper 0.64625022 2.733636615 2.266810412 3.971569511 13.11810314 16.21598894 7620.532914

3 Lower 0.646922757 0.069259416 0.596930697 0.119174514 0.004944589 19.41844686 1015.203119
Upper 0.945622429 5.737899322 0.929037465 15.56291339 5.708161666 63.83336503 1483.94903

4 Lower 0.275352203 0.038954183 0.203768322 0.040255426 0.008195895 0.000530818 135.6304597
Upper 0.722552865 6.084658937 0.627359867 17.89462854 99.92980499 3651.242472 355.9075807

5 Lower 0.421197788 0.108687719 0.055676373 0.276838839 0.006517569 0.629862335 1302.772872
Upper 0.66780674 2.502114282 1.663526698 4.559689107 50.92519049 47.3501406 2065.538923

6 Lower 0.618627043 0.39546588 0.647558041 0.6605023 0.370586396 9.79910631 995.1854994
Upper 0.793821647 1.629274128 0.805892175 3.755358387 3.974179923 66.28099514 1277.020338

7 Lower 0.215508899 0.231343373 0.379419111 0.567989982 0.27761767 0.922829144 767.6616452
Upper 0.950938082 2.785506687 0.636620521 4.447940205 6.422270402 180.2586609 3387.328389

8 Lower 0.130883905 0.063721435 0.150188955 0.521396896 0.005729389 0.863853909 689.2041245
Upper 1.204289495 8.088723739 0.720121312 7.535534274 151.1571643 221.1404848 6341.486353

9 Lower 0.199842498 1.08060127 0.062986129 1.927227138 6.45266E�05 0.97020651 549.1158594
Upper 0.200322267 1.889253583 0.080755748 3.911962959 0.0212772 1.581470339 550.4329246

10 Lower 0.135247436 0.007172789 5.238669787 0.314477336 0.948254932 4.301307489 27644.18074
Upper 0.256835709 6.327643794 5.722874361 1.354280686 7.391867127 18.74529946 52496.35709

Confidence intervals for the parameters given in Table 2.

Table 4
Monte Carlo results for (21) where all parameters are estimated except for a and Tmax

Patient d dx c p dE s N k a Tmax Fitness

Monte Carlo results for patient data

1 0.508 0.235 13.799 1.575 3.273 0.677 1927.93 0.001124 0.1 1000 0.034
2 0.358 1.447 19.046 2.075 1.44 0.539 5028.74 0.000992 0.1 1000 1.339
3 0.166 0.318 2.853 0.857 3.5 0.009 5793.4 0.000567 0.1 1000 1.571
4 0.33 2.232 0.186 3.031 0.819 0.375 297.22 0.002493 0.1 1000 0.297
5 0.196 4.048 0.51 6.124 15.962 0.003 4431.37 0.000299 0.1 1000 0.842
6 0.102 0.763 2.529 0.621 5.166 0.0277 7780.57 0.000655 0.1 1000 1.164
7 1.14E�05 1.022 0.591 1.671 2.11 0.032 6.39E+07 0.00039 0.1 1000 0.537
8 0.0006 2.621 0.106 4.002 0.253 0.605 1.43E+06 0.000297 0.1 1000 0.71
9 0.021 1.270 0.517 0.408 3.138 0.043 5281.81 0.002206 0.1 1000 0.431
10 0.039 0.61 6.698 0.271 2.148 5.637 181457 0.000204 0.1 1000 0.749

Median 0.134 1.146 1.559 1.623 2.643 0.209 5537.61 0.00061 0.1 1000 0.7674
SD 0.176 1.197 6.618 1.858 4.512 1.723 20145215 0.000812 0 0 0.4789

Confidence intervals are presented in Table 5.
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Hopf bifurcation, that implies the viral dynamics and the immune system are in a steady limit
cycle. This sustained oscillation arguably fits the data better than the Stafford’s model that allows



Table 5
The 95% confidence intervals assuming the estimates are log-normally distributed for results given in Table 4

Patient d dx c p dE s N

1 Lower 0.355926278 0.37702851 3.009281286 0.577063217 0.75718755 0.054254609 885.0862982 0.000808716
Upper 1.107236216 1.184637443 55.42227009 2.399269234 9.045585368 4.056135149 2753.376546 0.001511673

2 Lower 0.128094369 0.543557027 10.6493692 1.178125104 0.310549966 0.124676494 1326.254336 0.000780159
Upper 1.357206015 1.448264787 23.9349429 3.036814271 1.9540913 0.853590556 14052.1425 0.001200222

3 Lower 0.068707705 0.302853445 0.669431445 1.058533845 0.233500376 0.002162132 492.449679 0.000423118
Upper 1.949438323 2.144297034 96.87491046 3.137505393 4.073558773 5.968913961 13972.23874 0.006949096

4 Lower 0.016977163 0.132255961 0.160247958 0.398792277 0.39060487 0.002389622 389.2911258 0.002043234
Upper 0.25173926 2.902863421 2.791044798 4.322451946 25.76764482 2.547235282 5772.465441 0.00399994

5 Lower 0.011390414 0.734028369 0.391152095 1.111007602 4.661651903 0.000269476 1322.905442 0.000281053
Upper 0.657644241 3.765393184 1.056756425 10.84105534 12.91344416 0.045092588 76379.97593 0.000330484

6 Lower 0.049436962 0.057711926 0.469614932 0.460493656 1.483131634 0.000823213 2861.206244 0.000344831
Upper 0.276107527 3.132022799 6.871009494 4.111276677 9.638879843 3.129113844 15979.97769 0.001079469

7 Lower 4.21369E�06 0.677793968 0.417692617 1.11729361 0.384326674 0.001851063 69.32549911 0.00037794
Upper 10.53004049 1.459692361 0.942442996 3.070994414 8.55633811 0.457018517 173244432.6 0.00044031

8 Lower 1.15049E�05 0.118998842 0.290142498 0.319610726 2.323238485 0.02233281 360187.1407 0.000330759
Upper 0.002304357 2.923134007 1.887115323 4.964050869 5.403618194 0.745303254 72142898.37 0.000500491

9 Lower 0.000942735 0.390351303 0.179190962 0.458751288 2.484614502 0.006198279 1121.677211 0.001874126
Upper 0.098067302 1.72273365 0.937811286 2.785938466 5.364394123 2.424903822 116681.8135 0.002471544

10 Lower 0.00930342 0.169269222 3.399139174 0.001207637 0.497764664 2.953410201 41273.23149 0.000120942
Upper 0.17202424 1.473820091 18.58834758 26.99863384 14.00511861 13.57648783 763159.3491 0.000474163

Confidence intervals for the parameters given in Table 4.
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Fig. 4. Analysis for patient 6, comparing the models in Stafford et al. [1] and (12). The parameters for the Stafford
model with (Stafford model 2) and without (Stafford model 1) an immune response are the same as in [1]. Our model’s
(12) (Delay model 1) parameters are given in Table 2 for patient 6. Fits of this data did not allow for the existence of
sustained oscillations and matched observations during primary infection but not the long term data. Stafford’s model
without the immune response shows the same behavior and they corrected this fit by invoking an exponential immune
response (Stafford model 2). Our model with the immune response did not fit well the long term data, but if we change
the value for c from 0.69 day�1 (Delay model 1) to 1.39 day�1 (Delay model 1a), we find the sustained oscillations that
provide a better fit to the data. Asterisks (*) are patient data.
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for an immune response [1] (see Fig. 3) and supports our hypothesis of an adapting immune re-
sponse (see Tables 3–5).

The analysis of patient 6’s data (see Fig. 4) is interesting in that there are sampled data points
early in the infection as well as a few long term data points, i.e., up to one year. Stafford’s model
without the immune response and our Delay model 1 using the estimated parameters from the
Monte Carlo simulations fitted the early data well but not the long term data. Stafford was able
to correct this by adding a non-autonomous term, i.e., a piecewise exponential term, to account
for the immune response. Our Delay model 1 (12), which allowed the immune response to be a
variable in the model, was also able to correct this problem in patient 2 but did not do such a good
job in patient 6. However, if we adjusted the value for c from c = 0.69 day�1 to c = 1.69 day�1,
then we cross through a Hopf bifurcation which allowed for sustained oscillations and provided
a closer fit then the Stafford model to the data (see Fig. 4).

A third comparison from patients 1 and 10 showed damped oscillations but no sustained oscil-
lations for a realistic parameter set. The predicted behaviors of (12) and the Stafford model were
again similar but again with changes to the parameter estimations (see Fig. 5). We found an aver-
age value for d for these two patients to be de2 = 0.273 while Stafford found de2 = 0.43. Again sug-
gesting the productively infected T cells are living longer during primary infection than during
drug therapy or latency. While for some patients we found dramatic differences in the value for
c, in these two patients we found a difference of only 20%, suggesting the virus particles are dying
earlier in their life cycle (see Table 2), and that different viral dynamics may exist from one patient
to another.

Finally, we examined how our predictions change when we allow for T cells to have a logistic
growth (21). We chose the dynamics of the target cells to be the same as in [2]. We ran Monte
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Fig. 5. For both patients 1 and 10 we find damped oscillations when using the estimated values from the Monte Carlo
simulations suggesting a much different biological interpretation. Again, if we adjust the value of dx in patient 10, from
dx = 0.241 viral-day�1 (Delay model 1) to dx = 2.241 viral-day�1 (Delay model 1a) and change c from 5.19 day�1 to
7.19 day�1, we find a fit that can mimic the model in Stafford that allows for an immune response (Stafford model 2).
Asterisks (*) are patient data.
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Carlo simulations and again found differences in the estimated parameters. The Delay model 2
(21) estimated d to be d = 0.134 day�1 and c to be 1.559 day�1 while the Delay model 1 (12)
estimated d = 0.514 day�1 and c = 0.557 day�1. This is a reduction of 74% in d and a 180%
increase in c. However, as mentioned earlier, the data is fit equally well, suggesting the data
does not statistically support one model over another. In most cases, we found that the
Delay model 2 (21) dampened the oscillations more rapidly then in the non-logistic case (see
Fig. 6).

We are trying to fit a model with many parameters, and it is apparent that more data points are
needed to determine which model is more accurate with statistical significance. It is particularly
striking that even with up to 16 data points available for testing model accuracy, these observa-
tions are consistent with more then one different model, each implying very different pathogenic
behavior.
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corresponding parameters used are given in Tables 2 and 4. The logistic model seems to dampen the oscillations more
rapidly, while still providing a reasonable fit. Asterisks (*) are patient data.
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