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Quantitative genetics has primarily focused on describing genetic
effects on trait means and largely ignored the effect of alternative
alleles on trait variability, potentially missing an important axis of
genetic variation contributing to phenotypic differences among
individuals. To study the genetic effects on individual-to-individual
phenotypic variability (or intragenotypic variability), we used Dro-
sophila inbred lines and measured the spontaneous locomotor
behavior of flies walking individually in Y-shaped mazes, focus-
ing on variability in locomotor handedness, an assay optimized to
measure variability. We discovered that some lines had consis-
tently high levels of intragenotypic variability among individuals,
whereas lines with low variability behaved as although they
tossed a coin at each left/right turn decision. We demonstrate that
the degree of variability is itself heritable. Using a genome-wide
association study (GWAS) for the degree of intragenotypic var-
iability as the phenotype across lines, we identified several
genes expressed in the brain that affect variability in handedness
without affecting the mean. One of these genes, Ten-a, impli-
cates a neuropil in the central complex of the fly brain as influ-
encing the magnitude of behavioral variability, a brain region
involved in sensory integration and locomotor coordination. We
validated these results using genetic deficiencies, null alleles, and
inducible RNAi transgenes. Our study reveals the constellation of
phenotypes that can arise from a single genotype and shows that
different genetic backgrounds differ dramatically in their propen-
sity for phenotypic variabililty. Because traditional mean-focused
GWASs ignore the contribution of variability to overall phenotypic
variation, current methods may miss important links between ge-
notype and phenotype.
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Quantitative genetics was founded on the assumption that
phenotypic variation is explained solely by differences in

mean phenotypes among genotypes. Under this model, intra-
genotypic variability is assumed to be attributable to nongenetic
environmental perturbations (1). There is, however, growing
evidence for the importance of genetic control of variance (2–4)
and that variance itself is a quantitative trait. Although studies of
morphology (5–7) and animal breeding (8, 9) have long noted
the heterogeneity of variance among genotypes, this axis of
variation has received little attention compared with the effect of
genetic variation on trait means. As a result, the mechanisms by
which variable phenotypes arise from a uniform genetic back-
ground are still poorly understood, particularly in the context
of behavior, where variability may be a critical determinant of
phenotypic differences (10, 11). Most recently, with the advent of
genome-wide association studies, several groups (3, 4, 12, 13)
have mapped quantitative trait loci affecting variance (vQTLs)
by comparing phenotypic variances among individuals that share
alleles. These studies examine the average effect of QTL alleles
across genetic backgrounds and heterogeneous environments
across individuals (14), in the process losing any specific effects
intrinsic to each individual.

Here, we examine diversity that is typically hidden in pop-
ulation averages by examining phenotypic variability among in-
dividuals with the same genotype. This diversity is the variation
that we would observe if we could generate a large number of
copies of individuals of the same genotype in a common envi-
ronment and measure a trait across them [an experiment for
which isogenic lines (5–7, 14, 15) are especially suited]. In this
case, phenotypic differences among genetically identical in-
dividuals result from subtle microenvironmental perturbations
and stochasticity in development, whereas differences in vari-
ability among genotypes reflect genetic differences in develop-
mental stability (7). Although intragenotypic variability contributes
to phenotypic variation in a population, this source of variation is not
usually estimable because, with few exceptions, each individual in an
outbred diploid population is a unique instance of its genotype (Fig.
1A). As a consequence we have little understanding of the causes and
consequences of interindividual intragenotypic variability. This phe-
notypic variance nevertheless has wide ranging implications. In
evolutionary biology, variability offers an adaptive solution to
environmental changes (15, 16). In medical genetics, many dis-
eased states emerge beyond a phenotypic threshold, and high
variability genotypes will produce a larger proportion of in-
dividuals exceeding that threshold than low variability geno-
types, even if each genotypic class has the same mean. Although
intragenotypic variability has been discussed in animal behavior,
particularly in the context of the emergence of personality (10, 17),
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to date no genes have been associated with behavioral variability
that do not also affect the mean.
To study phenotypic variability, we used a panel of wild-

derived Drosophila inbred lines. These inbred lines are an ideal
tool because the genetic variation that was present between in-
dividual flies in their natural population is now captured between
lines in the panel. For each line, this allows us to measure any
phenotype on a large number of individuals of the same genetic
background, age, and rearing environment, thus empirically
estimating the magnitude of intragenotypic variability (Fig. 1A).
Specifically, we measured the spontaneous locomotor behavior
of flies walking individually in Y-shaped mazes (18), focusing on
the variability in locomotor handedness (left-right turning bias).
The precision and high-throughput nature of our assays allows a
large number of flies to be measured per genotype and permits
robust estimates of the sampling error on variance itself.

Results
We tracked 2 h of locomotor behavior of 110 individuals (on
average) from each of 159 lines from the Drosophila Genetic
Reference Panel (DGRP) in a randomized block design. For
each individual fly, we recorded the time and left-right direction
of each turn in the maze (Fig. 1B), estimating a turn bias score as
the fraction of turns that were to the right. Flies performing
more than 50 turns were analyzed and completed 413 turns per
trial on average. We began by comparing the mean turning bias
and found no significant genetic variation across lines (Fig. S1).
In other words, averaged across individuals within a line, each
line is unbiased, making an equal proportion of left and right
turns (with the modal fly being unbiased; Fig. 1). We verified the
lack of genetic variation for turning bias within lines by crossing
pairs of males and females with matched turning biases (e.g., two
strongly right-biased parents). For all crosses, the phenotypic
mean and variance of the distribution of the F1 generation was
statistically indistinguishable from the distribution of the pa-
rental line (Fig. S2). Handedness therefore provides an ideal
framework to study the genetics of variability because genetic
effects on variability are not confounded by mean effects.
Next, using parametric (ANOVA) and nonparametric (boot-

strapping) statistical approaches, we compared levels of intra-
genotypic variability across lines and found highly significant
among-line differences in variability, implying that the abun-
dance of individuals that were either strongly left- or right-biased
was itself variable among lines. This observation indicates that
the degree of intragenotypic variability itself is under genetic
control in these lines (Fig. 1C and Table S1). To obtain further
evidence that intragenotypic variability is heritable, we mated
two high-variance and two low-variance lines to each other and
measured turning bias in the resulting progeny (phenotyping
an average of 183 individuals per cross). Intercrosses between high-
variance lines led to high variance F1 progeny and crosses with low-
variance lines yielded low variance F1 progeny (Fig. 2 A and B).
In both cases, the variability in the F1 progenies was statisti-
cally indistinguishable from that of the parents.
It is conceivable that some lines might be better than others at

buffering microenvironmental perturbations, in which case the
degree of intragenotypic variability among lines would be cor-
related across traits. To test this possibility, we scored additional
phenotypes from our Y-maze data, namely, the total number of
turns (a measure of overall activity); the left-right mutual in-
formation between successive turns; and the regularity of turn
timing. We also analyzed other phenotypes previously measured
on the DGRP at the individual level [starvation resistance (19),
chill coma recovery (19), startle response (19), and night sleep
(20)]. We found significant genetic variation for variability in all
these phenotypes, confirming that genetic control of variability is
ubiquitous across phenotypes. On the other hand, we found no
evidence that the variances of these traits are correlated across

phenotypes [with the sole exception of mean absolute deviations
(MADs) of turn bias and switchness; Fig. S3]. This result sug-
gests that the genetic basis for intragenotypic variability is trait
specific (and implicates many independent loci controlling these
often-ignored traits).
The DGRP lines have been fully sequenced (19), allowing for

genome-wide association mapping using the variability (i.e., MAD)
of turning bias as a trait. Although the DGRP is underpowered to
study the architecture of complex traits due to the relatively small
number of lines (n = 159 in our study), it is a good resource to
identify candidate genes for experimental follow-up (21, 22). To
that end, we performed an association study using a series of locus-
specific mixed linear models (accounting for relatedness between
lines and experimental block effect) and found 36 polymorphisms
in 22 genes associated with variability in turning bias using a
nominal P value (19, 21) of 5 × 10−6 (Fig. S4 and Table S2).
These genes are enriched with high significance for expression in
the CNS both in adults and in larvae [adult CNS enrichment in
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Fig. 1. Intragenotypic variability of locomotor handedness varies across
DGRP lines. (A) The similarity between concepts of variance, variation, and
variability may lead to some confusion. Variance is used to describe the
standard statistical dispersion parameter (σ2) or estimates of it derived from
observations (s2). Variability refers to the potential of an organism or ge-
notype to vary phenotypically, phenotypic differences we could observe
across clones of the same genotype (i.e., red fly = high variability genotype,
blue fly = low variability genotype). Variation refers to the realized (ob-
servable) differences between individuals or genotypes. (B) Diagram of the
Y-maze used to quantify individual locomotor behavior. Plot at right illus-
trates 200 sequential turns for seven representative individual flies. A turn
bias of 0.05 indicates that this particular fly turned right 5% of the time
(black stripes indicate right turns and green stripes left turns). (C) Sorted
distribution of the SDs of within-line individual turn bias for 159 DGRP lines.
Red and blue filled dots are significant, exceeding their corresponding tick-
marked 99.9% Cis, estimated by permutation. See Table S1 for experimental
sample sizes. Cyan and yellow highlighted dots are significant at P < 0.001
based on nonparametric bootstrap. (D) Distributions of turning bias across
individuals for three representative DGRP lines with low, intermediate, and
high intragenotypic variability. Each dot represents the turning bias of a
single fly within that line. Lines are β distribution fits, chosen because they
model overdispersed binomial distributions.
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adult: Fisher exact test, P < 0.001; in larvae: Fisher exact test,
P < 0.01; data from FlyAtlas (23)]. Among these, the synaptic
target recognition gene Tenascin accessory [Ten-a; genome-wide
association study (GWAS), P < 3 × 10−6; Fig. 2C] caught our
attention. Ten-a is a transmembrane signaling protein involved in
synapse formation (24, 25), typically expressed presynaptically. In
the antennal lobe, Ten-a supports an expression-level matching
code with high-expression neurons partnering with other high
expression neurons (and low with low) (24). Teneurin impairment

causes profound neuromuscular junction disruption (25). Within
the central brain, Ten-a mutation causes midline fusion defects
within the central complex), a brain structure implicated in
sensory integration and locomotion (26). Ten-a is highly con-
served from insects to mammals (27). To validate the role of
Ten-a in modulating variability in turning bias, we used a null
allele (Ten-acbd-KS96; Fig. 2D), a deficiency overlapping Ten-a
(Df(1)Ten-a (24) (Fig. 2E), and expression knockdown using
inducible RNAi (tub-Gal4;tub-Gal80ts > UAS-TRiP.JF03375;
Fig. 3). In all cases, disrupting Ten-a increased the variability in
turning bias with no effect on the mean. The effect of RNAi
knockdown suggests a quantitative relationship between Ten-a
mean expression and variance in turning bias.
The bias in handedness of a given fly is a fixed property of that

individual (e.g., a young adult with a strong left bias will display
this bias throughout its life) (18). The persistence of this bias
suggests that handedness may be wired during development. To
determine whether there is a critical developmental period when
Ten-a expression is required to regulate variability, we used
temperature-inducible RNAi to knock down Ten-a in sliding 3-d
windows (Fig. 3 A and B). We found that knocking down Ten-a
expression in midpupae increases the resulting adults’ variability
(Fig. 3D). This stage coincides with a spike in Ten-a expression
(Fig. 3C) and the formation of the central complex (28, 29).

Discussion
In this study, we used a simple behavioral trait to show that in-
dividual genotypes vary considerably in their degree of intra-
genotypic variability (7, 15) and found that this variation is
heritable. Similar to work on fluctuating asymmetry (30), such
experiments allow us to estimate how robust development is
to microenvironmental perturbation and highlight the conse-
quences of this variation for an individual’s phenotype. Our use
of inbred lines enables the estimation of a parameter (intra-
genotypic variability) that otherwise could not be observed and
uncovers the spectrum of phenotypes a given genotype can
produce in a given environment. Furthermore, using association
mapping uncovered a gene, ten-a, which implicates the central
complex of the brain.
In a companion study, Buchanan et al. (18) mapped a set of

neurons within the central complex (i.e., protocerebral bridge
columnar neurons) that regulates the magnitude of left-right
turn bias and therefore the magnitude of intragenotypic vari-
ability. Together these studies constitute a rare example linking
natural genetic variation for a complex behavioral trait, to mu-
tants implicating a brain region, to a specific subcircuit within
this region. Thus, we can begin to paint the path from genetic
variation to behavioral individuality.
One of the great challenges in modern biology is to under-

stand the functional consequences of genomic variation and to
determine how and when it contributes to phenotypic differences
among individuals. During the last decade, we have made re-
markable progress in understanding the genetic basis of complex
traits and diseases, thanks in part to the application of GWAS to
large cohorts. Unfortunately, we have fallen short of the goal of
explaining heritability for complex traits in terms of allelic effects
(31, 32). The traditional framework used to map QTLs focuses
on the average effect of alternative alleles averaged in a pop-
ulation. However, as we have shown in this study, when phe-
notypic variation results from alleles that modify phenotypic
variance rather than the mean, this link between genotype and
phenotype will be not be detected. The case of locomotor
handedness is an extreme example, where there is virtually no
heritability for mean handedness and all of the phenotypic
variation in this population is attributable to intragenotypic
variability. Nevertheless, it highlights the important contribution
genetic control of variability can play in our understanding of the
cause of phenotypic variation.
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Fig. 2. Intragenotypic variability for turning bias is heritable. Effect of a Ten-a
mutation on intragenotypic variability. (A) Distribution of F1 turn biases
resulting from high variance line 105 reciprocally crossed to high variance line
45 (Brown-Forsythe, P = 0.08; n105 × 105 = 235; n45 × 45; = 315; n105 × 45 = 223;
n45 × 105 = 135). (B) Distribution of F1 turn biases resulting from low variance
line 535 reciprocally crossed to low line variance line 796 (Brown-Forsythe, P =
0.02; n535 × 535 = 197 n796 × 796 = 265; n796 × 535 = 160; n535 × 796 = 234). In both
panels, the progeny are presented on the off diagonal. Lines are β distribution
fits. Points are individual flies. For both A and B, P values comparing F1 to
parents ranged from 0.14 to 0.99, uncorrected for multiple comparisons.
(C) Intragenotypic variability (MAD) in turn bias of flies harboring alternative
alleles of the Ten-a SNP identified in our GWAS (n = 159; GWAS, P < 3 × 10−6;
phenotypic variance explained by this polymorphism: R2 = 19.5%). (D) Turn
bias MAD of a homozygous Ten-a null allele (cbd1; red) and heterozygous
control (blue). bk indicates the Ten-a+ genetic background Berlin-K. ncbd1/bk =
59, ncbd1/cbd1 = 99; Brown-Forsythe, P = 0.0074; bootstrapping, P < 0.001.
(E) Turn bias MAD of a line bearing a homozygous deficiency overlapping
Ten-a (red) and heterozygous control (blue). nDf(1)-bk = 100, nDf(1)Ten-a = 97;
Brown-Forsythe, P = 1.5−11; bootstrapping, P < 0.001. ***P < 0.001. Right plots
in all panels are corresponding β distribution fits of the distribution of turn bias
scores within each experimental group. Shaded regions are 95% CIs on the β
fits, estimated by bootstrap resampling; CIs in A are small compared with line
thickness. Error bars are ±SE estimated by bootstrap resampling.

Ayroles et al. PNAS Early Edition | 3 of 6

N
EU

RO
SC

IE
N
CE



If, in a common macroenvironment, different genetic back-
grounds vary in their propensity for phenotypic variability, in-
dividuals drawn from a high-variability genetic background have
the potential to explore a wider range of phenotypic space than
those drawn from a low-variability background (sometimes far
beyond what may be determined by the mean effect alone). We
observe intragenotypic variability for every phenotype we in-
vestigate, ranging from behavioral to metabolic, indicating that
variability is ubiquitous. Maintaining variability could be advan-
tageous in the context of evolutionary adaptation, but in human
genetics, it could be deleterious when an extreme phenotype
enhances disease risk. The implications for medical genetics are
far-reaching (14, 31, 32), specifically for attempts to predict
phenotypes from genotypes. This point is illustrated in Fig. 4: if we
consider that each individual is a random draw from a distribution
determined (in part) by its genotype, then we should not think of
genotypes as determining the phenotypic value of that individual;
rather, we should think of genotypes as determining the proba-
bility of that individual having a particular phenotypic value (33).
This model requires the development of additional experimental
and statistical approaches for mapping QTLs, and several are al-
ready being developed (4, 12, 14, 33–35).
Our work does not address the adaptive significance of intra-

genotypic variability or the evolutionary forces maintaining var-
iation at alleles affecting variability. Addressing such questions
would, for example, require additional information on the fitness
consequences of variability in handedness. Although the allele
frequencies of the most significant SNPs are relatively high in the
DGRP, we did not detect any significant deviation from neutrality
for the genes harboring these SNPs. It should also be emphasized
that differences in variability across lines could emerge from a
neutral process. The nature of the forces influencing the evolution

of alleles that affect variability has, more generally, been the focus
of a rich theoretical literature explaining this phenomenon from a
game theory perspective (36) or in terms of bet-hedging (37).
Under various scenarios, increased phenotypic variability may al-
low some individuals in a population to explore a broader range of
phenotypic space, thus maintaining this population at, or close to,
some fitness optimum over time. This scenario should be partic-
ularly favored in fluctuating environments (38, 39). We point
out, however, that it is still an open question whether genetic
mechanisms leading to variation in intragenotypic variability
are also associated with those underlying phenotypic plasticity
(i.e., genotype-by-environment interactions in response to mac-
roenvironmental variation, described, for example, through
reaction norms).
Although inbred lines are an ideal way to study the genetic

basis of intragenotypic variability (because variation between
individuals within a line is caused primarily by microenviron-
mental effects), not all systems are amenable to this approach. In
many circumstances, alternate designs are available. For exam-
ple, if the phenotype of interest is molecular, recent progress in
single-cell technology now makes it possible to measure cell to
cell variation within an individual genotype (14), enabling the
study of intragenotypic variability in natural populations, in-
cluding humans (33). At the organismal level, humans also have
the experimental confound of being outbred. Approaches in this
case range from the use of twin studies to family-based analyses
(34). In systems where controlled crosses can be carried out, a
wider range of options is possible (2, 12, 13, 40). These ap-
proaches have been particularly effective in breeding programs,
where intragenotypic variability is not desirable (2). In fact, the
idea that there may be genetic variation underlying phenotypic
variability dates back to the 1950s (41–43), but the actual estimates
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of the heritability of this component are more recent and pri-
marily derived from outbred organisms, using family-based
analyses in agricultural species ranging from rabbits to dairy cows
(reviewed in ref. 2). By using a model organism to study the
mechanisms underlying variability, our study adds to a growing
body of literature recognizing the importance of variance control
in complex trait genetics.

Materials and Methods
Drosophila Stocks. The DGRP consists of a collection of isofemale lines derived
from a single field collection from the Raleigh, NC, farmers’market, followed
by 20 generations of full-sib mating that rendered most loci homozygous
within lines (expected F = 0.986) (19). The DGRP lines are available from the
Drosophila Stock Center (flystocks.bio.indiana.edu). Stocks used for Ten-a
validation were Berlin-K, central-body-defectKS96, Df1-Ten-a, and RNAi TRiP.
JF03375 (tub-Gal4;tub-Gal80ts > UAS-TRiP.JF03375). All flies were reared on
standard fly media (Scientiis and Harvard University BioLabs Fly Food Facil-
ity), in a single 25 °C incubator at 30–40% relative humidity with a 12/12-h
light/dark cycle. Before each assay, flies were fully randomized across blocks,
lines, Y-maze arrays, and position on the array. At least three strains were
assayed simultaneously on each array.

Phenotypic Assay. Each experiment examines one array of 120 Y-mazes
(refered to as maze-array). Mazes were illuminated from below with white
LEDs and imaged with 2MP digital cameras, and the X-Y positions of each fly
centroid were automatically tracked and recorded with custom written
software. Further details about the assay are provided in ref. 18; the code
is available at lab.debivort.org/neuronal-control-of-locomotor-handedness/.
We estimated the degree of variability of each line using the MAD (4, 13). It
is defined as the median of the absolute deviation from each observation’s
median: MAD = median [jXi – median(Xi)j], where Xi is the phenotypic score
of an individual fly within a line. MAD scores were computed for each line
for each phenotype. Only females were used in this experiment, and only
lines yielding data from a minimum of 75 individuals were included. Fly
behavior in the mazes was monitored for 2 h. This assay generated four
phenotypes: (i) the handedness or left/right turning bias in the arms of the
maze summed over all left/right decisions; (ii) the number of turns over the
2 h period, an estimate of overall locomotor activity; (iii) the “switchiness”
of the right/left turn sequence, which is related to the mutual information
between successive turns (e.g., LLLLLRRRRR: low switchiness, high mutual
information; LLRLLRRRLR: moderate switchiness, low mutual informa-
tion; LRLRLRLRLR: high switchiness, high mutual information) defined as
(N<L,R> +N<R,L>)/(2NRNL/N), where N<L,R> is the number of left turns followed
by right turns, N<R,L> is the number of right turns followed by left turns NR is
the number of right turns, NL is the number of left turns, and N is the total

number of turns; and (iv) the regularity of turn timing: a fly with a high score
makes turns uniformly throughout the experiment, whereas a low score
would characterize a fly making a small number of dense streaks of turns
but is inactive for dozens of minutes at a time. It is defined as MAD(ITIs)/
(7,200/N), where ITIs is the vector of interturn intervals in seconds.

Quantitative Genetic Analysis.
Analysis of means. To determine whether there was genetic variation segre-
gating in the DGRP affecting the mean turning bias, we partitioned the
variance for line means using the following ANOVA model: Y = μ + Lrandom+
Brandom + L × Brandom + A + X + A × X + e, where Y is turning bias score of
each fly, L is the effect of line treated as random, B is the effect of block
treated as random, X is the box effect, A is the maze-array effect, and e is
the error variance (Table S1). ANOVA was implemented using PROC MIXED
in SAS 9.3.
Variance heterogeneity. We used several statistical approaches to estimate
heterogeneity of variance for turning bias between lines (Table S1): (i) the
Brown–Forsythe test, which is based on a one-way ANOVA and relies on the
absolute deviation from the median (4, 44); (ii) nonparametric bootstrapping
in which we first pooled all of the turn bias scores for all individual flies across
lines and then resampled each line experimental group from this pool,
matching the sample size (lines in which the MAD of the resampled group was
closer to the MAD of the pooled data, in fewer than 10 of 10,000 resamples,
were taken as significant; this tests the null hypothesis that each group is
drawn from an identical distribution of observations, using MAD as a test
statistic); (iii) a nonparametric version of the analysis of mean for variances
(ANOMV) (45) [this approach compares the group means of the MAD to the
overall mean MAD under the null hypothesis that the group MAD means
equal each line specific MAD (results in Table S1), implemented in SAS 9.3]; and
finally (iv) we used the same ANOVAmodel described above for the analysis of
means but used the absolute deviation from the median (4, 5) as a measure for
each fly as the dependent variable. This test was implemented using PROC
MIXED in SAS 9.3.
Phenotypic correlation between traits.We assessed four traits as measured in our
study and four additional traits gathered from the literature (SD for star-
vation, startle response, chill coma recovery, coefficient of environmental
variation for night sleep). Data are from refs. 19 and 20. Phenotypic correlation
between each trait pair was computed as the Pearson product-moment cor-
relation (implemented using PROC GLM in SAS 9.3). P values were not cor-
rected for multiple comparison.

High and Low Variance Lines Intercrosses. To confirm that variability was
heritable, we crossed high variability lines 45 and 105 together and low
variability lines 796 and 535 together. We assessed statistical significance
between parental lines and their progeny using the Brown–Forsythe test
and a bootstrapping two-tailed z-test (with n = 10,000 resamples). We
resampled the turn bias of the parents and for each iteration calculated the
MAD of turning bias and then compared the MAD for the F1 progeny to
their parents.

Genome-Wide Association Mapping. GWAS was performed using the code and
approach described in ref. 19 (dgrp2.gnets.ncsu.edu). We fitted a series of
loci-specific mixed linear models using the following model: Y = μ + Sb + Iu + e,
where Y is the MAD of turning bias of each DGRP lines, S is the design matrix
for the fixed SNP effect b, I is the incidence matrix for the random polygenic
effect u, and e is the residual (19). A total of 1,931,250 SNPs and indels were
used in our analyses, with the minor alleles present in at least seven DGRP
lines, using only biallelic sites. For each tissue, we used FlyAtlas AffyCalls (23)
to determine which genes were expressed in which tissue. To determine
significance, we used a Fisher’s exact test comparing the expected number of
gene expressed in each tissue across the entire genome to the observed
number of genes expressed in each tissue in our gene list.

Validation of Ten-a Effect on Variability.
Ten-a null and deficency. The turning bias and MAD of turning bias of ho-
mozygotes of both the null allele Ten-acbd-KS96 (28) and deficiency over-
lapping Ten-a Df(1)Ten-a (29) were compared with heterozygous animals
over their genetic background, Berlin-K.
Time course knockdown of Ten-a RNAi. Ten adult Ptub-Gal80ts;Ptub-Gal4/Sb
females were crossed to three UAS-Ten-a RNAi y1,v1;P(TRiP.JF03375)attP2
males for RNAi induction. Flies were allowed to mate for 24 h at 20 °C, at
which point the parents were removed, and the bottles containing F1 eggs
were returned to 20 °C until the beginning of their heat shock window. Flies
were exposed for 72 h to 30 °C temperature in a sliding window each day
over 14 windows (Fig. 3A). All flies assayed were between 3 and 5 d after
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Fig. 4. Consequences of intragenotypic variability on the fraction of a hy-
pothetical population exceeding a disease threshold. Visual representation
of the effects of variance on the prevalence of phenotypes exceeding a
threshold, such as a disease state. Genotypes 1 and 2 differ in their degree of
intragenotypic variability. The sets of circles at the left represent the range
of possible outcomes for each genotype. Generally, each individual in an
outbred diploid organism is a unique instance of its genotype. By contrast,
our experiments with inbred lines allow us to consider multiple individuals
from the same distribution. An individual drawn at random from geno-
type 1 (high variability) may land in the tail of the distribution, potentially
in disease space. On the other hand, an individual drawn randomly from
genotype 2 never gets a chance to explore the phenotypic space explored
by genotype 1, even if it is just as much of an outlier within its respective
distribution.

Ayroles et al. PNAS Early Edition | 5 of 6

N
EU

RO
SC

IE
N
CE

http://flystocks.bio.indiana.edu/
http://lab.debivort.org/neuronal-control-of-locomotor-handedness/
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1503830112/-/DCSupplemental/pnas.201503830SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1503830112/-/DCSupplemental/pnas.201503830SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1503830112/-/DCSupplemental/pnas.201503830SI.pdf?targetid=nameddest=ST1
http://dgrp2.gnets.ncsu.edu/


eclosion. In parallel, each day, developing flies of the same genotype were
examined and counted to determine the fraction of flies in each developmental
stage at the time of RNAi induction (Fig. 3B). Controls were performed
using Ptub-Gal80ts;Ptub-Gal4/Sb females crossed to Canton-S males and
Canton-S females crossed to UAS-Ten-a RNAi y1,v1;P(TRiP.JF03375)attP2
males (Fig. 3D); otherwise, they were treated identically.
Ten-a expression. Data for Ten-a expression over developmental time (Fig. 3C)
were downloaded from FlyBase and derived from ModEncode (modENCODE
DDC ids: modENCODE_4433, _4435 and _4439 through _4462). These data
reflect animals synchronized by developmental stage to within 2 h. To make
these data comparable to our experimental groups, in which egg laying

occurred over 24 h, we corresponded the developmental stages of the
FlyBase data to our developmental stage time course (Fig. 3B), linearly in-
terpolated the expression values, and applied a 24-h sliding window average
to the interpolated data, mimicking the dispersion effects of our longer egg
collection window.
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Drosophila Stocks. The DGRP was created as a community re-
source for the genetic mapping of complex traits (1). It consists of
a collection of isofemale lines derived from a single field col-
lection from the Raleigh, NC, farmers market, followed by 20
generations of full-sib mating that rendered most loci homozygous
within lines (expected F = 0.986) (2). As a result, the genetic
variation that was present between individual flies in the natural
population is now captured between lines in the panel. This
property of wild-derived inbred lines allows us to measure any
phenotype on a given genotypic background and phenotype the
same genotype a large number of times in any environment.
Completion of the genome sequencing for all lines combined with
Drosophila’s generally rapid decay in linkage disequilibrium be-
tween polymorphic sites makes the DGRP a powerful tool to
identify genetic polymorphisms that affect quantitative phenotypes
(3). The DGRP lines are available from the Drosophila Stock
Center (flystocks.bio.indiana.edu). We used a total of 159 lines
in this study (lines with the highest inbreeding coefficient); a list
is provided along with data at lab.debivort.org/genetic-control-
of-phenotypic-variability. Stocks used for Ten-a validation were
Berlin-K, central-body-defectKS96 (4), Df1-Ten-a (5), and RNAi
TRiP.JF03375 (6). All flies were reared on standard fly media
(Scientiis and Harvard University BioLabs Fly Food Facility), in
a single 25 °C incubator at 30–40% relative humidity with a 12/12-h
light/dark cycle. Before each assay, flies were fully randomized
across blocks, lines, Y-maze arrays, and position on the array. At
least three strains were assayed simultaneous on each array.

Variance, Variation, Variability. The similarity between concepts of
variance, variation, and variability may lead to some confusion.
The meanings of these terms are reviewed inWagner and Altenberg
(7). In accordance with their definition, we used the term variance
(8, 9) to describe the standard statistical dispersion parameter (σ2)
or estimates of it derived from observations (s2). Variability refers to
the potential of an organism or genotype to vary phenotypically.
Variation refers to the realized (observable) differences between
individuals or genotypes.

Phenotypic Assay. Studying variance as a trait poses a number of
challenges including the large sample size required (precise es-
timates of variance requires a larger number of observations than
needed to estimate means), the experimental design (as to not
confound sources of error), and potential measurement error of
the phenotype itself (9). It is with these considerations in mind
that we developed a high-throughput assay aimed at monitoring
the behavior of individual flies placed into individual Y-mazes
(10) (Fig. 1A). Each experiment examines one array of 120 Y-mazes
(refered to as maze-arrray). Mazes were illuminated from below
with white LEDs (5500K; LuminousFilm), imaged with 2MP digital
cameras (Logitech), and the X-Y positions of each fly’s centroids
were automatically tracked and recorded with software custom
written in LabView (National Instruments). Further details
about the assay are provided in ref. 10; the code is available at
lab.debivort.org/neuronal-control-of-locomotor-handedness/. Al-
though various statistics can be computed to estimate the degree
of variability of a distribution, in this study, we use one the most
robust metrics, the MAD (11, 12). It is defined as the median of
the absolute deviation from each observation’s median: MAD =

median [jXi – median(Xi)j], where Xi is the phenotypic score of
an individual fly within a line. MAD scores were computed for
each line for each phenotype. Only females were used in this
experiment, and only lines yielding data from a minimum of 75
individuals were included. Before each assay, flies were very
lightly anesthetized, rapidly transferred to an individual Y-maze,
and given a recovery period of 20 min before the start of the
assay. Fly behavior in the mazes was monitored for 2 h. This
assay generated four phenotypes. (i) The handedness or left/
right turning bias in the arms of the maze summed over all left/
right decisions. A turning bias score of 0.8 for a given fly would
indicate that this individual made left turns 80% of the time at
the maze’s junction over the 2-h period. This simple phenotype is
particularly well suited for this study given that it is measured
without error, and the high number of turns for any given fly
ensures a robust estimate of the turning bias and it variance for
each fly. (ii) The number of turns over the 2-h period, an esti-
mate of overall locomotor activity. (iii) The switchiness or the
mutual left-right information between successive turns right/left
turn sequence (e.g., LLLLLRRRRR: low switchiness, high mu-
tual information; LLRLLRRRLR: moderate switchiness, low
mutual information; LRLRLRLRLR: high switchiness, high
mutual information) defined as (N<L,R>+N<R,L>)/(2NRNL/N),
where N<L,R> is the number of left turns followed by right turns,
N<R,L> is the number of right turns followed by left turns, NR is
the number of right turns, NL is the number of left turns, and N is
the total number of turns. (iv) The regularity of turn timing: a fly
with a high score makes turns uniformly throughout the experi-
ment, whereas a low score would characterize a fly making a
small number of dense streaks of turns but is inactive for dozens
of minutes at a time. It is defined as MAD(ITIs)/(7,200/N),
where ITIs is the vector of interturn intervals in seconds. The
left/right turning bias is the main focus of this study; additional
traits were measured to illustrate that the degree of variability
across traits is not correlated between lines.

Quantitative Genetic Analysis.
Analysis of means. To determine whether there was genetic vari-
ation segregating in the DGRP affecting the mean turning bias,
we partitioned the variance for line means using the ANOVAmodel
Y = μ + Lrandom+ Brandom + L × Brandom + A + X + A × X + e,
where Y is turning bias score of each fly; L is the effect of line
treated as random, B is the effect of block treated as random, X is
the box effect, A is the maze-array effect, and e is the error variance
(Table S1). ANOVA was implemented using PROC MIXED in
SAS 9.3 (13).
Variance heterogeneity. We used several statistical approaches to
estimate heterogeneity of variance for turning bias between lines
(Table S1). (i) The Brown–Forsythe test, which is based on a
one-way ANOVA and relies the absolute deviation from the
median (8). (ii) Nonparametric bootstrapping in which we first
pooled all of the turn bias scores for all individual flies across
lines and then resampled each line experimental group from this
pool, matching the sample size. Lines in which the MAD of the
resampled group was closer to the MAD of the pooled data in
fewer than 10 of 10,000 resamples were taken as significant. This
analysis tests the null hypothesis that each group is drawn from an
identical distribution of observations, using MAD as a test statistic.
(iii) A nonparametric version of the ANOMV (14, 15). This ap-
proach compares the group means of the MAD to the overall
meanMAD under the null hypotheses that the groupMADmeans
equals each line specific MAD (results in Table S1), implemented
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in SAS 9.3 (13, 15). (iv) Finally, we used the same ANOVA model
described above for the analysis of mean but used the absolute
deviation from the median (11, 16) as a measure for each fly as
the dependent variable, implemented using PROC MIXED in
SAS 9.3 (13).
Phenotypic correlation between traits. We assessed four traits as
measured in this study and four additional traits gathered from
the literature (SD for starvation, startle response, chill coma
recovery, coefficient of environmental variation for night sleep).
Data are from refs. 2 and 17. The phenotypic correlation between
traits was computed as the Pearson product-moment correlation
(implemented using PROC GLM in SAS 9.3). P values are not
corrected for multiple comparison (18).

High and Low Variance Lines Intercrosses.To confirm that variability
was heritable, we crossed high variability lines 45 and 105 together
and low variability lines 796 and 535 together. Ten females and
five males were used for each cross. Flies were reared and
phenotyped using the same protocoled described above. Note
that parental behavior was remeasured concurrently with F1
behavior following a corresponding self-cross (e.g., 45 × 45).
We assessed statistical significance between parental lines and
their progeny using the Brown–Forsythe test and a bootstrapping
two-tailed z-test (with n = 10,000 resamples). We resampled the
turn bias of the parents and for each iteration calculated the
MAD of turning bias and then compared the MAD for the F1
progeny to their parents.

Genome-Wide Association Mapping. GWAS was performed using
the code and approach described in ref. 2 (dgrp2.gnets.ncsu.edu).
In a first step, phenotypic stores were adjusted for the potential
effect of Wolbachia and known large inversions segregating in
this panel [namely: In(2L)t, In(2R)NS, In(3R)P, In(3R)K, and In
(3R)Mo]; none of them were associated with variability turning
bias. We then fitted a series of loci-specific mixed linear model
using the model: Y = μ + Sb + Iu + e, where Y is the MAD of
turning bias of each DGRP lines, S is the design matrix for the
fixed SNP effect b, I is the incidence matrix for the random
polygenic effect u, and e is the residual (2). A total of 1,931,250
SNPs and indels were used in these analyses with the minor al-
leles present in at least seven DGRP lines, using only biallelic
sites. Polymorphisms segregating within lines were discarded and
for each SNP at least 60 DGRP lines had to have been geno-
typed to be analyzed. Given the number lines available in the
DGRP, GWAS will generally be underpowered (19); however,
our goal is not to describe the overall genetic architecture of
each of these phenotypes but rather to identify interesting can-

didate genes that would provide some insight into the genetic basis
of variance control. For this reason, we used a liberal threshold of
P < 10−6. The analysis for tissue enrichment was based on FlyAtlas
data, which are publically available (20). For each tissue, we used
FlyAtlas AffyCalls (21) to determine which genes were expressed
in which tissue (using a conservative filter of four of four present
calls). To determine significance, we used Fisher’s exact test
comparing the expected number of gene expressed in each tissue
across the entire genome to the observed number of gene ex-
pressed in each tissue in our gene list.

Validation of Ten-a Effect on Variability.
Ten-a null and deficency. The turning bias and MAD turning bias of
homozygotes of both the null allele Ten-acbd-KS96 (5) and de-
ficiency overlapping Ten-a Df(1)Ten-a (10) were compared with
heterozygous animals over their genetic background, Berlin-K.
Time course knockdown of Ten-a RNAi. Ten adult Ptub-Gal80ts;Ptub-
Gal4/Sb females were crossed to three UAS-Ten-a RNAi y1,v1;
P(TRiP.JF03375)attP2 males for RNAi induction. Flies were al-
lowed to mate for 24 h at 20 °C, at which point the parents were
passaged out, and the bottles containing F1 eggs were returned
to 20 °C until the beginning of their heat shock window. Flies
were exposed for 72 h to 30 °C temperature, in a sliding window
each day over 14 windows (Fig. 3A). All flies assayed were be-
tween 3 and 5 d after eclosion. In parallel, each day, developing
flies of the same genotype were examined and counted to de-
termine the fraction of flies in each developmental stage at the
time of RNAi induction (Fig. 3B). Stages containing larval ani-
mals were microwaved to melt the media and poured through a
sieve, and larval carcasses were counted under a dissecting scope.
Controls were performed using Ptub-Gal80ts;Ptub-Gal4/Sb females
crossed to Canton-S males and Canton-S females crossed to UAS-
Ten-a RNAi y1,v1;P(TRiP.JF03375)attP2males (Fig. 3D); otherwise,
they were treated identically. Data for Ten-a expression over
developmental time (Fig. 3C) were downloaded from FlyBase
(22) and derived from ModEncode (23) (modENCODE DDC ids:
modENCODE_4433, _4435 and _4439 through _4462). These data
reflect animals synchronized by developmental stage to within 2 h.
To make these data comparable to our experimental groups,
in which egg laying occurred over 24 h, we corresponded the
developmental stages of the FlyBase data to our developmental
stage time course (Fig. 3B), linearly interpolated the expression
values, and applied a 24-h sliding window average to the in-
terpolated data, mimicking the dispersion effects of our longer
egg collection window.
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Table S2. Top GWAS hits for MAD of turning bias

Analysis category df F P

Analysis of variance for mean turning bias
Linerandom 158 0.88 0.85
Blockrandom 28 1.12 0.29
Line × blockrandom 772 1 0.49
Box 5 0.41 0.84
Maze-array 11 0.52 0.88
Box × maze-array 49 1.13 0.26

Analysis of variance for the absolute median
deviation of turning bias
Linerandom 158 4.31 <0.00001
Blockrandom 28 0.82 0.74
Line × blockrandom 772 1.04 0.2
Box 5 1.76 0.11
Maze-array 11 0.67 0.76
Box × maze-array 49 1.16 0.22

Alternative test for heterogeneity of variance
between DGRP lines for turning bias
O’Brien 158 8.5953 <0.00001
Brown–Forsythe 158 7.567 <0.00001
Levene 158 7.701 <0.00001
Bootstrap Results in Table S1
ANOMV Results in Table S1

F, F ratio statistic; P: P value for F ratio statistic.
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